合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> Delta-8 動物胃腸道體內(nèi)中藥物的溶解度的測定——材料和方法
> 最大氣泡壓力法表面張力的測量原理
> 不同表面張力溫度系數(shù)對激光焊接熔池流場的影響
> 表面活性劑是否對斥水性土壤的潤濕性有影響?——結(jié)果和討論
> 石油磺酸鹽、聚丙烯酰胺濃度對界面張力的影響
> 溫度對水—十二烷基硫酸鈉體系與純水體系界面張力、厚度的影響——模擬方法
> 便于調(diào)節(jié)的表面張力儀結(jié)構(gòu)組成及原理
> 液體分布器設(shè)計與表面張力有何關(guān)聯(lián)之處
> 阿洛酮糖可提高塔塔粉溶液的表面張力,打發(fā)的蛋清更白泡沫更穩(wěn)定
> 幾種陰離子表面活性劑的基本性質(zhì)及應(yīng)用性能
推薦新聞Info
-
> 不同溫度下可溶解聚乙二醇低共熔溶劑的密度、電導(dǎo)率、表面張力等性質(zhì)(二)
> 不同溫度下可溶解聚乙二醇低共熔溶劑的密度、電導(dǎo)率、表面張力等性質(zhì)(一)
> ?表面張力測量科學(xué):從經(jīng)典原理到現(xiàn)代智能操作(以Kibron表面張力儀為例)
> 小桐子生物柴油制備方法、氧化程度與表面張力的相關(guān)性分析(二)
> 小桐子生物柴油制備方法、氧化程度與表面張力的相關(guān)性分析(一)
> 稀薄氧壓下原位生長銅薄膜的氧化程度研究
> 利用氣體分析儀、超微量天平等研究DOC和DPF對柴油機(jī)排放性能影響
> 復(fù)合劑對不同基礎(chǔ)油界面張力的影響差異
> 不同船用柴油機(jī)油基礎(chǔ)油界面性質(zhì)與分水性的關(guān)系
> 動態(tài)測量純凈水和硅油、純凈水和乙酸乙酯液體間界面張力
系列脂肪醇聚氧乙烯醚磺酸鹽表面活性劑制備、溶解性、表面張力及界面張力測定(二)
來源:石油化工 瀏覽 129 次 發(fā)布時間:2025-07-25
2.3地層水對表面張力的影響
使用模擬臨盤油田地層水將表面活性劑配制成溶液,考察油田地層水對表面活性劑表面活性的影響,實(shí)驗結(jié)果見圖1。由圖1可看出,在該油田地層水中,C14EO3S,C16EO3S,C18EO3S的cmc依次為80,40,10 mg/L,其所對應(yīng)的γcmc分別為28.86,32.38,33.75 mN/m。與C14EO3S在蒸餾水中的cmc相比,C14EO3S在油田地層水的cmc降低了20 mg/L。由文獻(xiàn)[1]的報道可知,在該油田地層水中,C14EO6S,C16EO6S,C18EO6S表面活性劑的cmc依次為100,50,50 mg/L,其所對應(yīng)的γcmc分別為29.14,36.74,34.65 mN/m。實(shí)驗結(jié)果表明,隨EO數(shù)的增加,脂肪醇聚氧乙烯醚磺酸鹽表面活性劑在油田地層水中的cmc和其所對應(yīng)的γcmc均有不同程度的增大。
圖1模擬臨盤油田地層水的濃度對表面活性劑表面活性的影響
2.4 CaCl2溶液對表面張力的影響
C16EO3S表面活性劑的抗鹽性能見圖2。
圖2 C16EO3S表面活性劑的抗鹽性能
由圖2可見,隨溶液中CaCl2含量的增大,C16EO3S表面活性劑的cmc和其所對應(yīng)的γcmc均呈下降趨勢;C16EO3S表面活性劑在質(zhì)量濃度為500,1 000,5 000 mg/L的CaCl2溶液中的cmc分別為40,30,25 mg/L,其所對應(yīng)的γcmc分別為32.76,31.13,30.42 mN/m,γcmc的降幅較小。實(shí)驗結(jié)果表明,C16EO3S表面活性劑在CaCl2溶液中也具有良好的活性,抗鹽能力較強(qiáng)。這是因為,C16EO3S分子結(jié)構(gòu)中的—SO3-基團(tuán)有一定的抗二價陽離子的能力,且分子中的EO鏈節(jié)與水分子間有較強(qiáng)的氫鍵作用,增加了C16EO3S的水溶性,可抗衡膠束的聚集,提高抗硬水的能力。
2.5界面活性
測定表面活性劑溶液與一系列正構(gòu)烷烴間的界面張力,若它與其中一種正構(gòu)烷烴的界面張力最低,則此正構(gòu)烷烴的碳原子數(shù)即為該表面活性劑的最小烷烴碳數(shù)(nmin)。當(dāng)某正構(gòu)烷烴和表面活性劑溶液形成的界面張力與原油和表面活性劑溶液形成的界面張力近似時,則可將該正構(gòu)烷烴視作與原油等效,原油的等效烷烴碳原子數(shù)值應(yīng)等于該正構(gòu)烷烴的碳原子數(shù)值,稱之為該原油的EACN。
用模擬臨盤油田地層水將脂肪醇聚氧乙烯醚磺酸鹽配制成質(zhì)量濃度為3 000 mg/L的溶液,在70℃下測得C14EO3S,C16EO3S,C18EO3S表面活性劑與原油間的界面張力分別為0.076,0.041,0.034 mN/m。表面活性劑溶液與正構(gòu)烷烴的界面張力見圖3。
圖3表面活性劑溶液與正構(gòu)烷烴的界面張力
從圖3可看出,隨正構(gòu)烷烴碳原子數(shù)的增大,表面活性劑溶液與正構(gòu)烷烴的界面張力呈先減小后增大的趨勢。當(dāng)正構(gòu)烷烴的碳原子數(shù)為14~18時,C14EO3S,C16EO3S,C18EO3S與正構(gòu)烷烴的界面張力在10-2mN/m數(shù)量級,nmin分別為14,14,16。因此,脂肪醇聚氧乙烯醚(3)磺酸鹽表面活性劑與原油的界面張力和它與十四烷的界面張力非常接近,即臨盤原油的EACN為14。
脂肪醇聚氧乙烯醚(6)磺酸鹽表面活性劑與正構(gòu)烷烴間的界面張力在0.1 mN/m以上,界面活性明顯低于脂肪醇聚氧乙烯醚(3)磺酸鹽。這是因為,隨EO數(shù)的增加,脂肪醇聚氧乙烯醚磺酸鹽分子的親水性顯著增強(qiáng),表面活性劑分子進(jìn)入水相的趨勢逐漸增強(qiáng),油水相的分布能力不均衡,減弱了表面活性劑分子在油水界面的富集。
3結(jié)論
1)C14EO3S,C16EO3S,C18EO3S表面活性劑的Krafft點(diǎn)分別為5,28,49℃。脂肪醇聚氧乙烯醚(3)磺酸鹽表面活性劑中的脂肪醇碳原子數(shù)越少(碳原子數(shù)小于16),在鹽溶液中的溶解性越好。
2)C14EO3S,C16EO3S,C18EO3S在蒸餾水中的cmc值分別為100,50,10 mg/L,其所對應(yīng)的γcmc分別為29.12,33.86,34.59 mN/m;在模擬臨盤油田地層水中的cmc值依次為80,40,10 mg/L,其所對應(yīng)的γcmc分別為28.86,32.38,33.75 mN/m。當(dāng)疏水基鏈長相同時,隨EO數(shù)的增加,脂肪醇聚氧乙烯醚磺酸鹽表面活性劑的cmc和其所對應(yīng)的γcmc均呈增大趨勢。
3)C16EO3S表面活性劑在CaCl2溶液中具有良好的活性,抗鹽能力較強(qiáng)。
4)臨盤原油的EACN為14。脂肪醇聚氧乙烯醚(6)磺酸鹽表面活性劑的界面活性明顯低于脂肪醇聚氧乙烯醚(3)磺酸鹽的活性。
參考文獻(xiàn)[1]鄭延成,張曉梅,薛成,等.脂肪醇聚氧乙烯醚(EO6)磺酸鹽的合成及性能研究[J].日用化學(xué)工業(yè),2013,43(1):21-25.





